1) Tractitio: $\alpha^{-}(0, \gamma) \rightarrow \mathbb{R}^{2}$ x(t) = (srint, cost + logton==) a) $\alpha'(t) = (crt, -smt + csct)$ at t= 翌, cos(星)=0 $-\operatorname{Sm}(\frac{\pi}{2}) + \operatorname{esc}(\frac{\pi}{2}) = 0$ So α is not regular at $t = \frac{\pi}{2}$. For any other $t \in (0, \pi)$, cost $\neq 0$, so α is regular everywhere else. b) Direction of taugent line is quinen by expression for $dy = \frac{dy}{dx} = \frac{-sint + csct}{cost}$ <u>l(k)</u> So equestion of tangent line is: y-(cost+logtomt/2) k-snit -smt + cset cost at y-axis, x=0. =) $y - \cos t - \log \tan \frac{1}{2} = \frac{\sin t - \sin t \csc t}{\cos t} = -\cos t$ =) $\gamma = \log \tan \frac{1}{2}$.

So the point $A = \alpha(E) = (sint, cast + logtom <math>\frac{1}{2})$ B=(0, logtom t/z),So length of live segment AB: $\overline{AB} = \int (smt - 0)^2 + (cost + logtom \frac{1}{2})^2$ -logtomt/2)2 $= \int Sm^2 t + cas^2 t = 1$

2) Suppose a is a cylindrical heles. WTS 1/2 = const.
We have < T, u> = cos 00. Then differentiating, we have
$0=\langle T', u \rangle = \langle KN, u \rangle$
K=0, so <n, u="">=0, je u is perpendicular to N.</n,>
Then writing un the basis {T, N, B}, we have
$N = \cos \theta_0 T + \sin \theta_0 B$
420Gr 11 is a with vector, then B-component
Af un 11-000 = JSm20. = Sm00. Then differenting this amos
$(K\cos\theta_{0} - 7\sin\theta_{0} \mathbf{L}) = 0 \Rightarrow K\cos\theta_{0} = 7\sin\theta_{0}$
Using Sign Centrales =) K = the A a control
B'=- 2N Ston convertion = - tando using other ston
Now suppose is a constant. Then with
K= tomb for some Do, Then defining N= costo 7+ sido B,
me com check
$\langle T, u \rangle = \langle T, cos \theta_0 T + sin \theta_0 B \rangle = cos \theta_0$ a constant.
and This consultion.

So $\alpha = \frac{1}{k}N + \frac{B'}{k}B = -\rho N - \rho' \lambda B$
and we have
$\int_{-\frac{1}{K}}^{2} = \left(\frac{-1}{K}\right)^{2} + \left(\frac{K'}{K'z}\right)^{2} = \left(\frac{1}{K}\right)^{2} + \left(\frac{-K'}{K'}\right)^{2} \left(\frac{1}{z}\right)^{2}$
$= \rho^2 + (\rho')^2 \lambda^2$ is a constant.
Sufficiency: Defining $\beta(s) = \alpha + \rho N + \rho' \lambda B$ alternootively $\beta(s) = \alpha + \rho N - \rho' \lambda B$ using the sign convertion
Well show & is a constant:
$\beta' = \alpha' + \rho' N + \rho N' + (\rho' \lambda)' B + (\rho' \lambda) B'$
= $(\rho \mathcal{L} + (\phi' \lambda)')B$
So need to show $p2 + (p'\lambda)' = 0$.
Since we have $p^2 + (p'\lambda)^2 = const$, differentiating, we have
$0 = 2\rho\rho' + 2(\rho'\lambda)(\rho'\lambda)'$
$=\frac{2\rho'}{E}\left(\rho^{2}+\left(\rho'\lambda\right)'\right)$
Since $p' \neq 0$, $2 \neq 0$, we must conclude $p' + (p')' = 0$.
So $p'=0 \rightarrow p$ is constant, say $p(s) \equiv A$. Then
$ \alpha(s) - A ^2 = \rho^2 + (\rho' L)^2 = const Hence, \alpha lies on a sphere$

 $\alpha(s_0) \top \alpha(s_1)$ 4) lisin the lecture notes suppose N (152) X (53) a(s1), a(s2), a(s3) are collinear. Then Notes there are two forced vectors $V, n \in \mathbb{R}^3$ Notes such that $\langle \alpha(s_i) - V, N \rangle = 0$ for each S_i $\alpha(s_i)$ Regarding this as a function $f(s) = \langle \alpha(s) - V, N \rangle$, by MVT me time there there are Z1, Z2 such that $S_1 < z_1 < S_2 < Z_2 < S_3$ with $f'(z_1) = f'(z_2) = 0$. Then applying MNT agein there is a y with Z1< 7<Z2 such that $f''(\gamma) = 0$, that is, $\langle x''(\gamma), n \rangle = 0$ But as S, S2, S3 > S0, n > N(50), and x"(y)=K(S0)N(S0) which would imply K=0, a contradiction. Inel Part of the question : Since a(s1), a(s2), b(s3) are not collinear (for s1, s2, s3 sufficiently close to s0), they eleterine a plane in normal vector (up to a sign) b southering <b, a(s3)-a(s1)>=0, <b, a(s2)-a(s1)>=0 ~(s) ~(s) ~(sz) Writing g(s) = < b, x(s) - x(s) > Then $q(s_i) = 0$ for i=1,2,3(i=) is the trutal case). Then by MVT, 32, 22 with Si<2,<52 <22<53 Such that g'(≥,)=g'(≥z)=0 Q(23)

Theotis, <b, $\alpha'(z_1) > = <b, \alpha'(z_2) > = 0$. ato, by MUT, there is a y s.t. Z, < y < Z2 such that 9"(y)=0, that is, <b, &"(y)>=0. Taky Siszisz > So, X(Zi) -> T(So). $\alpha''(z) \rightarrow K(s_0) N(s_0)$ Since K(so) >0, this mightes $<b, T(s_0) > = 0, < b, N(s_0) > = 0.$ Thus is, $b \longrightarrow B(s_0)$ (after choosing a sign). In other words, the plane cloternined by $\kappa(s_1), \kappa(s_2), \kappa(s_3)$ converges to the one spanned by $T(s_0), N(s_0)$.

5) This problem is straightforward using the Fundamental Theorem of curves.

Let $\beta(s) = (a \cos \frac{\pi}{2}, a \sin \frac{\pi}{2}, b \frac{\pi}{2}), c^2 = a^2 + b^2$ be a penemetrization of a circular helix. Then we can comprote $K_{\mu}(s), \mathcal{Z}_{\mu}(s)$. As in class, we get:

 $K(s) = \frac{\alpha}{e^2}$

 $L(s) = \frac{b}{c^2}$ Using B = -2N stop convention

So for a>0, $b\neq0$, $K_{B}>0$, $T_{B}\neq0$ are constants. So given regular cance $\alpha(s)$ with $K_{\alpha}>0$, $T_{\alpha}\neq0$ constants, choosing a_{α} , b_{α} s.t.

 $\frac{a_{\alpha}}{a_{\alpha}^{2}+b_{\alpha}^{2}} = K_{\alpha}, \quad \frac{b_{\alpha}}{a_{\alpha}^{2}+b_{\alpha}^{2}} = \lambda_{\alpha}$ which we can always do since $\lambda_{\alpha} \neq 0$, $K_{\alpha} > 0$, by uniqueness part of findemential theorem of curves we can see their α is a creation helio with paremetrization as above for chosen a_{α} , b_{α} .

Alternatively, by Problem 2 above since $\frac{K}{2} = const.$, we can say \propto is a cylindriced helix. Then need to share thost a projected onto $T \cdot N$ prome is a Circle But this is immediate since we know K > 0 is constant.

Second abternatively: explicitly some the ODE given by Fréret formbas.