\int Tractno $\sim \alpha$ (0, α) $\rightarrow \mathbb{R}^2$ $\alpha(t)$ = (smt, cost + hogtom=) a) $\alpha'(t) = (c_{st}, -s_{mt} + csct)$ at $t = \frac{\pi}{2}$, $\cos(\frac{\pi}{2}) = 0$ $-Sim(\frac{y}{2}) + CSC(\frac{y}{2}) = 0$ So a is not regular at $t = \frac{\pi}{6}$. For any other $t \in (0, \pi)$, cost ≠0, so à is regulair energuliere else. b) Direction of tougent live is given by expression for $\frac{du}{dx} = \frac{dy}{dx} = \frac{-snit + csct}{csct}$ $\frac{1}{2}$ $\frac{1}{2}$ So equation of tengent live is: y-(cost+dogtant/2) -snit + cset $k-sint$ at y-anis x=0. $\frac{sn^{2}t - snitcsct}{csct} = -cost$ $= 7 - \omega + - \omega + \omega$ =) $y = \text{logtanh}$

So the point $A = \alpha(\epsilon) = (sm\epsilon, \text{Cost} * \text{Logtom}\ \epsilon/2)$ $B = (0) logtant(z)$. So length of line segment AB. $\overline{AB} = \sqrt{(smt-0)^2 + (cost + logtm\frac{1}{2})^2}$ $-l$ sgtant $\left\{ \begin{matrix} 2 \\ 1 \end{matrix} \right\}$ $=\sqrt{3m^2t+cos^2t}=1$

2) Suppose α is a cylindrical helix. WTS $\frac{15}{2}$ = const. We have 5π , u α = u β . Then differentiating, we have $0 = C_1, u > 1 = 2KN, u > 0$ $R > 0$, so $\langle N, u \rangle = \langle N, w \rangle$ as $\langle u \rangle$. Men writin un the basis {J, N, B}, we have $u = \cos\theta_0 T + \sin\theta_0 B$ whole u is a most vector, then B-component $4u$ is $\sqrt{1-\cos^2\theta_0} = \sqrt{\sin^2\theta_0} = \sin\theta_0$ Then differentiating this gives $(K\omega s\theta_0 - 2sin\theta_0)V = 0 \Rightarrow K\omega s\theta_0 = 2sin\theta_0$ ↑ u eringsign can also \Rightarrow $\frac{R}{2}$ = tanto, a constant. $B'=-2N$. Sign convention. $B'=-tan\theta_0$ using other sign convention. Now suppose $\frac{12}{2}$ is a constant. Then writing $E_0 = \tan\theta_0$ for some θ_0 . Then defining $u = \cos\theta_0 T + \sin\theta_0 B$, we can check $5.42 > 5.5$ usdot + smdoB > 5.00 a constant. and that u is constant.

 \mathcal{S} o α = $-\frac{1}{5}N+\frac{1}{5}N^{2}$ $B = -bN - byB$ and we here $\int_{0}^{2} = \left(\frac{1}{\kappa}\right)^{2} + \left(\frac{\kappa^{2}}{\kappa^{2}}\right)^{2} = \left(\frac{1}{\kappa}\right)^{2} + \left(\frac{\kappa^{3}}{\kappa^{2}}\right)^{2} \left(\frac{1}{\kappa}\right)^{2}$ $= \rho^2 + (\rho')^2 \lambda^2$ is a constant S ufficiency: Defining $\beta(s) = \alpha + \rho N + \rho' \lambda B$ $alternotwdy$ $(3(5) = \alpha + \rho N$ p 1 B using the styn convention $B' = Z N$ We'll show β is a constant: |ऽ α' + ρ' $N + \rho N' + (\rho' \lambda)'B + (\rho' \lambda)B'$ = (p2 + (px)')B So need to show p^{γ} + (p. λ ['] =0 Since we have $\rho^2 + (\rho'\lambda)^2$ = const, differentiating, we here $0 = 3p\rho' + 2(\rho'\lambda)(\rho'\lambda)'$ = $2e^{f}(pz + (p\lambda)^{v})$ Since $p' \neq 0$, $\tau \neq 0$, we must concluele $p' \mathcal{E} + (p' \lambda)' = 0$. So p' $= 0 \Rightarrow \beta$ is constant, say $\beta(5) = A$. Then $(\alpha(s) - A)^{2} = 0$ $2 + (p)$ λ)² = const Hence, a lies on a sphere

 $\alpha(s_0) \overline{\alpha(s_1)}$ 4) As in the lecture notes seppose $\frac{1}{\sqrt{\alpha_{i}^{2}(\alpha_{i})}}$ 02(S), x(S2), x(S3) are collinear. Then N_{η} (s) there are two fixed vectors $V, n \in \mathbb{R}^3$
 $N_{\eta} \leq N(S_1)$ such that $\langle N(S_i) - V, n \rangle = 0$ for each S_i .
 R $\alpha(S_3)$ Regarding this as a function $f(s) = \langle \alpha(s) - V, n \rangle$, by MVT we have that there are z_1 , z_2 such that
 $s_1 < z_1 < s_2 < z_2 < s_3$ with $f'(z_1) = f'(z_2) = 0$. Then applying MNT again there is a y with $31 < y < 22$ such that $f''(\eta) = 0$, that is, $\langle x''(\eta) \rangle$, $n > 0$ But as $s_{15}s_{15}s_{3} \rightarrow s_{0}$, $n \rightarrow N(s_{0})$, and $\alpha''(\eta) = K(s_{0})N(s_{0})$.
Which would imply $K=0$, a contradiction. Ind Part of the question! Since a(si), a(si), lets;) are not collineer (for si, si, si sufficiently
close to so), they eleternine a plane with normal vector (up to a sign) b satisfying <b , $\alpha(s_3) - \alpha(s_1)$ = 0,
 <b $\alpha(s_0)$ $\alpha(s_1)$ \sum_{ℓ} (sz) Writing $g(s) = 5 - \alpha(s) - \alpha(s)$ Then $g(s_i) = 0$ for $\bar{l} = l_i z_i$ 3 $(i=1$ is the trutal Then by MVT, 32, 22 with $S_1 < Z_1 < Z_2 < S_3$ Such that
 $g(z_1) = g(z_2) = 0$ $x(s₃)$

Then is, $\langle b, a'(z_1) \rangle = \langle b, a'(z_2) \rangle = 0$ ato, by MVT, there is a y s.t. \mathbb{Z}_1 < γ < \mathbb{Z}_2 such that $9''(7) = 0$, that is, <b, x''(y)> = 0. $Tali_j$ $S_i s_2 s_3 \gg s_0$ $\alpha'(z_i) \rightarrow T(s_0)$ $\alpha''(z) \rightarrow \kappa(s_0) N(s_0)$ Since K(so) >0, this implies $\langle 0, 1(z^0) \rangle = 0$ $\langle 0, 1/(z^0) \rangle = 0$ That is b -> B(so) (after choosing a sign)
In other words, the plane eleternmed by U(si), x(si), x(si)
converges to the one spanned by T(so), N(so).

5) This problem is straightforward using the Fundamental Theorem of ames .

Let $\beta(s) = (a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{c}{c})$, $c^2 = a^2 + b^3$ be ^a parametrization of a circular helix . Then we can comprate $\kappa_{\beta}(s)$, $\kappa_{\beta}(s)$. As in class, we got:

 $K(s) = \frac{a}{e^2}$

 $\mathcal{L}(s) = \frac{b}{c^2}$ Using $B = -\mathcal{L}N$ stop convention

So for $a > 0$, $6 \ne 0$, $K_{\beta} > 0$, $T_{\beta} \ne 0$ are constants. So given regular carve $\alpha(s)$ with $K_{\alpha} > 0$, $\tau_{\alpha} \neq 0$ constants, α given require correction $\frac{b}{c^2}$ llon
 $\frac{c}{c}$ = llon

 $\frac{a_{\alpha}}{a_{\alpha}^2+b_{\alpha}^2}$ = k_{α} , $\frac{a_{\alpha}}{a_{\alpha}^2+b_{\alpha}^2}$ = k_{α} which we can always do since $2a \neq 0$, $K_a > 0$ by uniqueness part of fundamental theorem of curves we can see theat x is a circular helix with parametrization a_1 above for chosen a_α , b_α .

alternatively, by Problem 2 alone since $\frac{\kappa}{2}$ = const., we can say α is a cylindrical helix. Then need to show that a projected into T- N plane is a circle But this is immediate since we know $K > 0$ is constant. Second abtenatively: explicitly solve the ODE given by Frévet formulas.